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ABSTRACT 

Metabolic control analysis allows one to quantify the behaviour of a metabolic 
pathway in steady state in terms of dimensionless coefficients. From the definition of 
metabolite and flux control coefficients and elasticities we are able to derive symbolic 
forms of these parameters, in terms of conventional kinetic parameters. At the simplest 

level we are able to substitute values of these kinetic parameters, to yield values for the 
metabolic control coefficients. Since we are substituting into symbolic equations we 
can always guarantee the conservation relationships hold. The basic relationships are 
the summation and connectivity theorems. The ability to define the control coefficient 
equations in matrix form not only allows easy solution by numerical inversion, but 
also opens up the possibility of obtaining the algebraic solutions by symbolic 
manipulation of the matrix. However, for matrixes longer than rank 4 or 5, this latter 
possibility, if done by hand, becomes very tedious and is prone to error. The solution 

to this problem is to develop computer software to automatically carry out this 
procedure. 
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1. INTRODUCTION 

Metabolic control analysis allows one to quantify the behaviour of a 

metabolic pathway in steady state in terms of dimensionless coefficients. 
Higging was one of the first authors to propose a quantitative analysis of the 

control of metabolic flux (Higgings (1965)). His analysis has been developed 

and elaborated by Kacser and Burns (1973) and independently by Heinrich 
and Rapoport (1974). The theoretical principles developed by these authors 

have greatly facilitated the quantitative determination of the extent to 

which fluxes are controlled in a metabolic network. Bayram has been applied 
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the Computer algebra system to the enzymes kinetics (Heinrich and Rapoport 
(1974). Generally, two types of coefficients have been defined in the theory: 

 

1. The control coefficients (of flux or of metabolite concentrations) which 
correlate the change observed in a given parameter (flux concentration) 

to the perturbation of a particular step in metabolic network at the 

steady-state. 

 
2.  The elasticity coefficients which simply express the variation of the rate 

of an isolated step as a function of a given metabolite. 

 
The theory demonstrates that relationships exist between these 

coefficients, i.e. summation relationships between the control coefficients and 

connectivity relationships between the control coefficients and the elasticity 

coefficients. The summation relationship provides a linear constraint on the 
distribution of flux control coefficients. One consequence of this is that if there 

is a change in the steady state caused by a change in an external effectors, then 

the distribution of flux control coefficients will readjust so that the summation 
relationship is obeyed. If some reactions experience a fall in their flux control 

coefficients, then the flux control coefficients for other steps must rise. The 

summation relationship also indicates that if there are any steps which have 
flux control coefficients greater than one, then there must be other steps which 

compensate by having negative flux control coefficients. The summation 

relationship puts constraints on the distribution of control such that if some 

enzymes have high control, then others must have less. The summation 
relationship provides the notion that enzymes compete for the control of flux. 

 

Connectivity relationship indicates how the intrinsic properties of the 
individual enzymes contribute to the properties of the whole system. From the 

definition of metabolite and flux control coefficients and elasticities we are able to 

derive symbolic forms of these parameters, in terms of conventional kinetic 
parameters. At the simplest level we are able to substitute values of these 

kinetic parameters, to yield values for the metabolic control coefficients. Since 

we are substituting into symbolic equations we can always guarantee the 

conservation relationships hold. We have done this in Bayram (1993) for a two 
enzyme system in vitro using an aspartate aminotransferase-malate 

dehydrogenase coupled system. 

 
The basic relationships are the summation and connectivity theorems. 

They allow one to express the behaviour of the system variables in terms of the 

kinetic properties of the isolated enzymatic reactions that build up the metabolic 

network. A matrix method was derived (Fell and Sauro (1985); Higgings 
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(1965); Sauro et al. (1987)) that allows the determination of the flux and 
concentration control coefficients of enzymes from their kinetic properties 

represented by the elasticity coefficients (Delgado and Liao (1992); Kacser and 

Porteous (1987); Kacser et al. (1990); Letellier et al. (1991); Reder (1988); Small 
and Fell (1989)). 

 

The ability to define the control coefficient equations in matrix form 

not only allows easy solution by numerical inversion but also opens up the 
possibility of obtaining the algebraic solutions by symbolic manipulation of the 

matrix. However for matrixes larger than rank 4 or 5, this latter possibility, if 

done by hand, becomes very tedious and is prone to error. The solution to this 
problem is to develop computer software to automatically carry out this 

procedure (Bayram (1996)). In this paper a brief description of such a program 

based on Reder's method (Letellier et al. (1991) is given. 

 
 

2. MAPLE COMPUTER ALGEBRA SYSTEMS 

MAPLE is a general-purpose commercial computer algebra system. 

It was first developed in 1980 by the Symbolic Computation Group at the 

University of Waterloo (Geddes et al. (2008)). Computers are usually used to 

manipulate numbers. However they can just as well work with other 
symbols, for example, algebraic variables. Computer algebra systems 

manipulate symbols not numbers. Rather than using the approximation 

methods of numerical analysis, they use exact algebraic techniques. Such 
systems tend to be interactive programs, commonly written in C, and they 

accept their input in a quasi-mathematical notation which is simple to use and 

remember. They can give general expressions as an answer, rather than only 
a numerical value. 

 

We have used MAPLE computer algebra matrix operations and linear 

algebra facilities to implement Reder's algorithm for analysing metabolic 
networks. 

 

 

3. SYSTEM AND METHODS 

We have developed a program that is written in algebraic and 

symbolic MAPLE form (Geddes et al. (2008)). Using this program it is 
possible to calculate the control coefficients from elasticity coefficients 

whatever the metabolic network is. A metabolic network is a set of reactions 
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1 2, ,..., rR R R  between the metabolites 1 2, ,..., mX X X   of concentrations  

1 2, ,..., .mx x x   Let us define the concentration vector x as 

 

1

2
x

m

x

x

x

 
 
 =
 
 
 

⋮
    (1) 

 

In order to construct the model, we at first write the stoichiometric matrix N of 

the system that describes how the metabolites iX  combine. The matrix N  is 

constructed as follows: the column j  of  N  represents the reaction j  and 

we write in this column at row i  

 

• α+ if the reaction j  produces α  molecules of ,iX  

• α−  if the reaction j  consumes α  molecules of ,iX  

• 0  if the reaction j  neither produces nor consumes ,iX  

 

that is to say the stoichiometric coefficient of iX  in reaction j . Let us 

illustrate the matter using an example 

 

 

 

The entry and exit points are represented by dots. For the example, the 
stoichiometric matrix is 

 

1 0 0

1 1 0

0 1 0
.

0 1 0

0 1 1

0 0 1

 
 − 
 −

=  
 
 −
 

−  

N     (2) 
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We assume that the rate of change of the concentration ix  of 

metabolite iX  is the sum of the r reaction rates, each weighted by the 

corresponding stoichiometric coefficient of iX . 

 

The velocity of each step iυ  is a function of ix  and of external 

parameters represented by :µ  

 

( )1 2, ,..., ,i i mx x xυ υ µ=    (3) 

and 

 

1

2
v

r

υ

υ

υ

 
 
 =
 
 
 

⋮
    (4) 

 
denotes the rate vector. Using this hypothesis, the metabolic system is 

expressed as 

 

dx

dt
= Nv     (5) 

 

For the example, this equation can be written as follows 

 

1

2

1

3

2

4

3

5

6

1 0 0

1 1 0

0 1 0
.

0 1 0

0 1 1

0 0 1

x

x
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xdt

x

x

υ

υ
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   
   

−     
   −  

=     
         −
   

−     

   (6) 

 

The concentrations 1 2, ,..., mx x x  of the metabolites 1 2, ,..., mX X X  at 

steady state are a solution of  
 

( )0 0
1 ,..., , 0mx x µ =Nv     (7) 
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and the fluxes at this steady state are defined by 
 

( )0 0
1 ,..., , .i i mJ x xυ µ=     (8) 

 

A brief description of the Reder's method follows. 

 

The stoichiometry matrix N  can be decomposed as: 

 

= RN LN     (9) 

 

where RN  is an om r×  matrix formed by the first om  rows of N  that 

constitute a basis for its row space. L  is an om m×  matrix that has the 

form 

=
 
 
 

0m

o

I
L

L
              (10) 

 

where 
omI is the o om m×  identity matrix and  oL  is ( ) .o om m m× ×   

 

For the example, we decompose the matrix N  so that its first three 

rows are independent. Therefore, 

 

1 0 0
1 0 0

0 1 0
1 1 0

1 0 00 0 1
0 1 1

1 1 0
0 1 0

0 1 11 1 0
0 1 0

1 1 0
0 0 1

1 1 1

 
   
   −     
 −    

= = −− − − − − −     −     −−     
  − 

−    − 

RN

L

N

�������

�������

            (11) 

where 

1 0 0

0 1 0

0 0 1

 
 =  
  

omI              (12) 
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and 

 

1 1 0

1 1 0 .

1 1 1

− 
 = − 
 − 

oL              (13) 

 

The elasticity matrix ′E  is defined by 
 

11 1

1

= .....

m

r rm

′ ′ 
 ′
 
 ′ ′ 

E

⋯

⋯ ⋯

⋯

ε ε

ε ε

              (14) 

 

where ij
′ε  is 

 

.i
ij

jx

δυ

δ
′ =ε               (15) 

The flux control coefficients are defined as 

 

= .
k j

j j

Jδ δµ

δυ δµ
′
kjC              (16) 

 

The matrix of flux control coefficients is calculated using 
 

[ ]
1

= 
−

′ ′ ′−r R RC I E L N E L N              (17) 

 

where  rI  is identify matrix with dimension .r r×  

 

The metabolite control coefficients are defined as 

 

= .
k j

j j

xδ δµ

δυ δµ
′
kjS               (18) 

 

The metabolite control coefficients matrix ′S  is calculated using following 

relationship 

[ ]
1

= .
−

′ ′− R RS L N E L N              (19) 
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The summation relationships between the flux control coefficients are 
derived from the symbolic development of the equation 

 

= ′C K K               (20) 

 

where  K is a matrix which contains the vectors of a basis of the null-space of 

the N  matrix, which is also the null-space of .RN   

 

The summation relationships between the metabolite control coefficients are 

 

= ′S K 0.                (21) 

 

The connectivity relationships between the flux control coefficients and the 
elasticity coefficients are 

 

( ) = .′ ′C E L 0               (22) 

 

 

Similarly the connectivity relationships between the metabolite control 
coefficients and the elasticity coefficients are 

 

( ) = .′ ′ −S E L L               (23) 

 

We used here nonnormalised coefficients, however it is easy to transform them 

into normalised coefficients using the formulae 
 

= .

= .

= .

j i

j i

ij ij j i

x

x

υ υ

υ

υ

′

′

ij ij

ij ij

C C

S S

ε ε

              (24) 

 

 
 

Figure 1: A substrate cycle model in a simple pathway 
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The matrix L  is determined by om  independent columns of N  i.e. 

 
1

= .
−

oRL NN               (25) 

 

The matrix K  is an ( )( )or r m× −  matrix. Its columns are built to be 

independent by looking for a K matrix of the form 

 

( )
= .
 
 

− o

A
K

I r m
             (26) 

 

Note that = =RNK N K 0  by definition of K (Letellier et al. (1991)). If 

A  exists, it then verifies 

 

+ = .
o 1R RN A N 0              (27) 

 

Thus, 

 

( )= = .
− −

o

1

R RA N N 0              (28) 

 

The program uses a modified Gram-Schmidt orthogonalisation process 

[13] to find independent rows or columns of the matrixes such as RN  

and ,
oRN  computes the nonnormalised coefficients ′

ijC , ′
ijS  and .ij

′ε  

 

An Example of Application of the Computer Program 

Let us consider a substrate cycle model, Figure 1, the rate law for 

each enzyme is a fully reversible Michaelis-Menten mechanism. The 

matrix N  for the mechanism is 

 

1 0 0 0

1 1 0 1
.

0 1 1 1

0 0 1 0

− 
 − =
 − −
 
 

N  

 

The computer program calculates flux control coefficients, metabolite 
control coefficients, summation and connectivity relationships in terms 
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of elasticity coefficients from matrix N  for a given metabolite network. 

The computer result for the mechanism shown in Figure 1 is: 
 

Flux control coefficients are 
 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

.

C C C C

C C C C

C C C C

C C C C

′ ′ ′ ′ 
 ′ ′ ′ ′
 ′ =
 ′ ′ ′ ′
 

′ ′ ′ ′ 

C  

 

The connectivity relationships between the flux control coefficients and 

the elasticity coefficients, for the substrate cycle model shown in Figure 
1 are 

( )

0 0

0 0
.

0 0

0 0

 
 
 ′ ′ =
 
 
 

C E L  

 

The summation relationships between the flux control coefficients, for 

the substrate cycle model shown in Figure 1 are 
 

0 1

1 1
.

1 0

0 1

 
 
 ′ = =
 
 
 

C K K  

 

Metabolic control coefficients in the matrix form, for the substrate 

cycle model shown in Figure 1 are 

 

11 12 13 14

21 22 23 24

.
S S S S

S S S S

′ ′ ′ ′ 
′ =  ′ ′ ′ ′ 

S  

 

The connectivity relationships between the metabolic control 
coefficients and the elasticity coefficients, for the substrate cycle 

model shown in Figure 1 are 
 

( )
1 0

.
0 1

− 
′ ′ = − =  

− 
S E L L  
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The summation relationships between the metabolic control 
coefficients, for the substrate cycle model shown in Figure 1 are 

 

0 0
.

0 0

 
′ =  

 
S K  

 

 

4. CONCLUSION 

We have presented the program in this paper is more general in that 

it is based on the mathematical analysis of the control theory of metabolism. 
Using the program it is possible to calculate the control coefficients from the 

elasticity coefficients whatever the metabolic network is. An other advantage 

of the our program is that it is now possible to determine all the summation and 

all the connectivity relationships between direct coefficients. It is clear that the 
relationships between direct coefficients can be translated into the 

corresponding relationships between the normalised ones. This would 

involve using ratios of rates or ratios of concentrations over rates, and would 
therefore be more complex and not so easy to handle. This justifies the usage 

of direct coefficients which is by no means of a limitation. It is always 

possible to transform one type of coefficient into the other using the 

computer algebra system. Maple can be used to derive metobolic control 
coefficients for biochemical reactions even if they have unlimited steps and 

intermediates by eliminating the tedious process of algebraically 

manipulating equations. 
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